153 research outputs found

    Derivatives of Sodium Boranocarbonate as Novel CO-Releasing Molecules (CO-RMs)

    Get PDF
    Despite the apparent and well-known toxic effects of carbon monoxide (CO), studies on the intriguing biological roles of this molecule are rapidly emerging. Recent investigations have brought to the limelight various physiological effects of CO which include, among others, vasorelaxation and inhibition of organ rejection after transplantation. The importance of CO in biology can be compared with another gas, nitric oxide (NO), an essential and ubiquitous signalling molecule. This parallelism led to the tantalising concept of using CO for therapeutic purposes wherein compounds that transport and deliver this gas to a target tissue would clearly facilitate both the clinical feasibility and the specificity of CO therapy. Sodium boranocarbonate, Na[H3 BCO2H] (1) was the first water-soluble and non-transition metal containing CO-releasing molecule (CO-RM) to be identified. In order to tune the rate of CO release, we modified 1 and synthesised and characterized various derivatives which release CO under physiological conditions but at rates different from the parent compound 1. The synthesis, structure and CO-releasing properties of ester and amide derivatives of 1 will be presented together with some biological studies carried out with a selection of the compounds

    Carbon monoxide reduces neuropathic pain and spinal microglial activation by inhibiting nitric oxide synthesis in mice

    Get PDF
    Background: Carbon monoxide (CO) synthesized by heme oxygenase 1 (HO-1) exerts antinociceptive effects during inflammation but its role during neuropathic pain remains unknown. Our objective is to investigate the exact contribution of CO derived from HO-1 in the modulation of neuropathic pain and the mechanisms implicated. Methodology/Principal Findings: We evaluated the antiallodynic and antihyperalgesic effects of CO following sciatic nerve injury in wild type (WT) or inducible nitric oxide synthase knockout (NOS2-KO) mice using two carbon monoxide-releasing molecules (CORM-2 and CORM-3) and an HO-1 inducer (cobalt protoporphyrin IX, CoPP) daily administered from days 10 to 20 after injury. The effects of CORM-2 and CoPP on the expression of HO-1, heme oxygenase 2 (HO-2), neuronal nitric oxide synthase (NOS1) and NOS2 as well as a microglial marker (CD11b/c) were also assessed at day 20 after surgery in WT and NOS2-KO mice. In WT mice, the main neuropathic pain symptoms induced by nerve injury were significantly reduced in a time-dependent manner by treatment with CO-RMs or CoPP. Both CORM-2 and CoPP treatments increased HO-1 expression in WT mice, but only CoPP stimulated HO-1 in NOS2-KO animals. The increased expression of HO-2 induced by nerve injury in WT, but not in NOS2-KO mice, remains unaltered by CORM-2 or CoPP treatments. In contrast, the over-expression of CD11b/c, NOS1 and NOS2 induced by nerve injury in WT, but not in NOS2-KO mice, were significantly decreased by both CORM-2 and CoPP treatments. These data indicate that CO alleviates neuropathic pain through the reduction of spinal microglial activation and NOS1/NOS2 over-expression. Conclusions/Significance: This study reports that an interaction between the CO and nitric oxide (NO) systems is taking place following sciatic nerve injury and reveals that increasing the exogenous (CO-RMs) or endogenous (CoPP) production of CO may represent a novel strategy for the treatment of neuropathic pain

    Nitric oxide synthases in GtoPdb v.2023.1

    Get PDF
    Nitric oxide synthases (NOS, E.C. 1.14.13.39) are a family of oxidoreductases that synthesize nitric oxide (NO.) via the NADPH and oxygen-dependent consumption of L-arginine with the resultant by-product, L-citrulline. There are 3 NOS isoforms and they are related by their capacity to produce NO, highly conserved organization of functional domains and significant homology at the amino acid level. NOS isoforms are functionally distinguished by the cell type where they are expressed, intracellular targeting and transcriptional and post-translation mechanisms regulating enzyme activity. The nomenclature suggested by NC-IUPHAR of NOS I, II and III [12] has not gained wide acceptance, and the 3 isoforms are more commonly referred to as neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) which reflect the location of expression (nNOS and eNOS) and inducible expression (iNOS). All are dimeric enzymes that shuttle electrons from NADPH, which binds to a C-terminal reductase domain, through the flavins FAD and FMN to the oxygenase domain of the other monomer to enable the BH4-dependent reduction of heme bound oxygen for insertion into the substrate, L-arginine. Electron flow from reductase to oxygenase domain is controlled by calmodulin binding to canonical calmodulin binding motif located between these domains. eNOS and nNOS isoforms are activated at concentrations of calcium greater than 100 nM, while iNOS shows higher affinity for Ca2+/calmodulin with great avidity and is essentially calcium-independent and constitutively active. Efficient stimulus-dependent coupling of nNOS and eNOS is achieved via subcellular targeting through respective N-terminal PDZ and fatty acid acylation domains whereas iNOS is largely cytosolic and function is independent of intracellular location. nNOS is primarily expressed in the brain and neuronal tissue, iNOS in immune cells such as macrophages and eNOS in the endothelial layer of the vasculature although exceptions in other cells have been documented. L-NAME and related modified arginine analogues are inhibitors of all three isoforms, with IC50 values in the micromolar range

    Hydrogen sulphide synthesis in GtoPdb v.2023.1

    Get PDF
    Hydrogen sulfide is a gasotransmitter, with similarities to nitric oxide and carbon monoxide. Although the enzymes indicated below have multiple enzymatic activities, the focus here is the generation of hydrogen sulphide (H2S) and the enzymatic characteristics are described accordingly. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are pyridoxal phosphate (PLP)-dependent enzymes. 3-mercaptopyruvate sulfurtransferase (3-MPST) functions to generate H2S; only CAT is PLP-dependent, while 3-MPST is not. Thus, this third pathway is sometimes referred to as PLP-independent. CBS and CSE are predominantly cytosolic enzymes, while 3-MPST is found both in the cytosol and the mitochondria. For an authoritative review on the pharmacological modulation of H2S levels, see Szabo and Papapetropoulos, 2017 [8]

    Haem oxygenase in GtoPdb v.2023.1

    Get PDF
    Haem oxygenase (heme,hydrogen-donor:oxygen oxidoreductase (α-methene-oxidizing, hydroxylating)), E.C. 1.14.99.3, converts heme into biliverdin and carbon monoxide, utilizing NADPH as cofactor

    Hydrogen sulphide synthesis (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Hydrogen sulfide is a gasotransmitter, with similarities to nitric oxide and carbon monoxide. Although the enzymes indicated below have multiple enzymatic activities, the focus here is the generation of hydrogen sulphide (H2S) and the enzymatic characteristics are described accordingly. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are pyridoxal phosphate (PLP)-dependent enzymes. 3-mercaptopyruvate sulfurtransferase (3-MPST) functions to generate H2S; only CAT is PLP-dependent, while 3-MPST is not. Thus, this third pathway is sometimes referred to as PLP-independent. CBS and CSE are predominantly cytosolic enzymes, while 3-MPST is found both in the cytosol and the mitochondria. For an authoritative review on the pharmacological modulation of H2S levels, see Szabo and Papapetropoulos, 2017 [4]

    Haem oxygenase (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Haem oxygenase (heme,hydrogen-donor:oxygen oxidoreductase (α-methene-oxidizing, hydroxylating)), E.C. 1.14.99.3, converts heme into biliverdin and carbon monoxide, utilizing NADPH as cofactor

    Nitric oxide synthases (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Nitric oxide synthases (NOS, E.C. 1.14.13.39) are a family of oxidoreductases that synthesize nitric oxide (NO.) via the NADPH and oxygen-dependent consumption of L-arginine with the resultant by-product, L-citrulline. There are 3 NOS isoforms and they are related by their capacity to produce NO, highly conserved organization of functional domains and significant homology at the amino acid level. NOS isoforms are functionally distinguished by the cell type where they are expressed, intracellular targeting and transcriptional and post-translation mechanisms regulating enzyme activity. The nomenclature suggested by NC-IUPHAR of NOS I, II and III [11] has not gained wide acceptance, and the 3 isoforms are more commonly referred to as neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) which reflect the location of expression (nNOS and eNOS) and inducible expression (iNOS). All are dimeric enzymes that shuttle electrons from NADPH, which binds to a C-terminal reductase domain, through the flavins FAD and FMN to the oxygenase domain of the other monomer to enable the BH4-dependent reduction of heme bound oxygen for insertion into the substrate, L-arginine. Electron flow from reductase to oxygenase domain is controlled by calmodulin binding to canonical calmodulin binding motif located between these domains. eNOS and nNOS isoforms are activated at concentrations of calcium greater than 100 nM, while iNOS shows higher affinity for Ca2+/calmodulin with great avidity and is essentially calcium-independent and constitutively active. Efficient stimulus-dependent coupling of nNOS and eNOS is achieved via subcellular targeting through respective N-terminal PDZ and fatty acid acylation domains whereas iNOS is largely cytosolic and function is independent of intracellular location. nNOS is primarily expressed in the brain and neuronal tissue, iNOS in immune cells such as macrophages and eNOS in the endothelial layer of the vasculature although exceptions in other cells have been documented. L-NAME and related modified arginine analogues are inhibitors of all three isoforms, with IC50 values in the micromolar range

    Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric-oxide synthase and S-nitrosothiols.

    Get PDF
    The stress protein heme oxygenase-1 (HO-1) is induced in endothelial cells exposed to nitric oxide (NO)-releasing agents, and this process is finely modulated by thiols (Foresti, R., Clark, J. E., Green, C. J., and Motterlini R. (1997) J. Biol. Chem. 272, 18411–18417). Here, we report that up-regulation of HO-1 in aortic endothelial cells by severe hypoxic conditions (pO2 ≤ 2 mm Hg) is preceded by increased inducible NO synthase and NO synthase activity. This effect is accompanied by oxidation of intracellular glutathione and formation of S-nitrosothiols. Incubation of cells with a selective inhibitor of inducible NO synthase (S-(2-aminoethyl)-isothiourea) or a NO scavenger ([2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide]) significantly attenuated the increase in heme oxygenase activity caused by reduced oxygen availability. A series of antioxidant agents did not prevent the elevation in heme oxygenase activity by hypoxia; however, the precursor of glutathione synthesis and thiol donor,N-acetylcysteine, completely abolished HO-1 induction. We also found that the hypoxia-mediated increase in endothelial heme oxygenase activity was potentiated by the presence ofS-nitrosoglutathione. These results indicate that intracellular interaction of thiols with NO is an important determinant in the mechanism leading to HO-1 induction by reduced oxygen levels. We suggest that in addition to oxidative stress, HO-1 gene expression can be regulated by redox reactions involving NO andS-nitrosothiols (nitrosative stress), emphasizing a versatile role for the heme oxygenase pathway in the cellular adaptation to a variety of stressful conditions

    Vasorelaxing effects and inhibition of nitric oxide in macrophages by new iron-containing carbon monoxide-releasing molecules (CO-RMs)

    Get PDF
    Carbon monoxide-releasing molecules (CO-RMs) are a class of organometallo carbonyl complexes capable of delivering controlled quantities of CO gas to cells and tissues thus exerting a broad spectrum of pharmacological effects. Here we report on the chemical synthesis, CO releasing properties, cytotoxicity profile and pharmacological activities of four novel structurally related iron-allyl carbonyls. The major difference among the new CO-RMs tested was that three compounds (CORM-307, CORM-308 and CORM-314) were soluble in dimethylsulfoxide (DMSO), whereas a fourth one (CORM-319) was rendered water-soluble by reacting the iron-carbonyl with hydrogen tetrafluoroborate. We found that despite the fact all compounds liberated CO, CO-RMs soluble in DMSO caused a more pronounced toxic effect both in vascular and inflammatory cells as well as in isolated vessels. More specifically, iron carbonyls
    • …
    corecore